
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d819

An Experimental Algorithmic Result Of Cloud

Computing For Resource Optimization Based On

Virtual Machines

Ms. Rachna Pandey1 Prof.(Dr.) R.K.Bathla2

Ph.D Research Scholar, Department of CSA, Desh Bhagat University,Mandi Gobindgarh, Punjab, India1

Professor, Department of CSA, Desh Bhagat University,Mandi Gobindgarh,, Punjab, India2

Abstract

In this paper, presentation of different static & stochastic meta-heuristic algorithms is compared with the

proposed algorithm. Static algorithms are easy to implement but they fail to provide even acceptable solutions.

Ant based algorithms are very popular for task scheduling related problems in cloud computing.

Autonomous agent-based load balancing algorithm (A2LB) is a dynamic agent based resource scheduling

algorithm that provides scalability and reliability by offering better resource utilization, and minimum response

time, but it results in high degree of migration. Particle Swarm Optimization (PSO) is a swarm- based meta-

heuristic algorithm influenced by the social behaviour of animals such as bird or fish. PSO has fewer primitive

mathematical operators than other metaheuristic algorithms which results in lesser convergence time and is

applied to continuous value problems. Ant Colony Optimization (ACO) is also a swarm based meta-heuristic

algorithm inspired by the behaviour of real ants looking for the shortest path between their colonies and a

source of food. Ant Colony Optimization algorithm is suited for solving discrete problems and can be used in

solving the cloud computing resource management and job scheduling. Algorithm proposed in thesis tries to

overcome the limitations of ACO & PSO.

Keywords:- ACO, PSO, Autonomous agent-based load balancing algorithm (A2LB)

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d820

1. INTRODUCTION

Optimization problems are prevalent in all domains and involve finding optimal or near-optimal solutions.

Large problems often require a sequential approach, focusing on objective functions. Researchers define steps

for problem recognition, model construction, and solution evaluation [17]. Cloud task scheduling is an

optimization problem involving efficient resource allocation to achieve a desired objective. The objective

function determines the best alternative, and even slight changes can lead to different solutions. Developers

face numerous optimization problems, requiring them to choose the optimal or near-optimal option based on

evaluation criteria. These problems typically aim to maximize or minimize the evaluation function.

Optimization problems have the following characteristics:

 Numbers of decision alternatives are available from which one alternative is selected.

 Selection of the alternate is subject to constraints that limit the number of available alternatives.

 Evaluation criteria is directly affected by choice of decision alternate.

 An evaluation function defined on the decision alternatives helps to describe the effect of the different

decision alternatives.

 Decision alternate for an optimization problem should be based on all available constraints and the one

that maximizes/minimizes the evaluation function.

1.2 Ant Colony Optimization

Ant Colony Optimization (ACO) comes under the category of met heuristic algorithms. The algorithm is

based on real ants and how they search for food. The ants travel from their colony to the food source. The

ants leave pheromones as they walk. Initially random ants select random paths. The pheromone they

leave also evaporates but at lesser intensity. So, the shortest path after some time is the one with highest

pheromone intensity which leads all other ants to follow that path. After a certain period, all ants choose

that path and which happens to be the shortest path [45].

Following is the pseudo code for implementation of ACO. [63]

Pseudo Code 1: ACO algorithm

//Input

Input: List of Cloudlet (Tasks) and List of VMs

//Output

Output: The best solution for tasks allocation on VMs Steps:

//Pseudo Code

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d821

1. Initialize:

Set Current_iteration_t=1.

Set Current_optimal_solution=null.

Set Initial value τij(t)=c for each path between tasks and VMs

//random assignment of ants on VM

2. Place m ants on the starting VMs randomly.

// selection of VM for each task

3. For k:=1 to m do

Place the starting VM of the k-th ant in tabuk. Do ants_trip while all ants don't end their trips

Every ant chooses the VM for the next task.

Insert the selected VM to tabuk.

End Do

// updating the optimal solution

4. For k:=1 to m do

Compute the length Lk of the tour described by the k-th ant according to Equation Update the

current_optimal_solution with the best founded solution.

5. For every edge (i, j), apply the local pheromone.

6. Apply global pheromone update according to Equation 7.

7. Increment Current_iteration_t by one.

// check if maximum iterations done

8. If (Current_iteration_t < tmax) Empty all tabu lists.

Goto step 2 Else

Print current_optimal_solution.

End If”

7. Return

Pseudo code 2: Scheduling based ACO algorithm

//Input

Input: Incoming Cloudlets and VMs List

//Output

Output: Print “scheduling completed and waiting for more Cloudlets”Steps:

//Pseudo Code

1. Set Cloudlet List=null and temp_List_of_Cloudlet=null

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d822

2. Put any incoming Cloudlets in Cloudlet List in order of their arriving time.

3. do ACO_P while Cloudlet List not empty or there are more incoming Cloudlets Set n= size of VMs

list

// if the no. of cloudlets left more than VMs

if (size of Cloudlet List greater than n)

Transfer the first arrived n Cloudlets.from Cloudlet List and put them on

temp_List_of_Cloudlet

// if the no. of cloudlets left less than VMs

Else

Transfer all Cloudlets.from Cloudlet List and put them on temp_List_of_Cloudlet
end If

Execute ACO procedure with input temp_List_of_Cloudlet and n end Do

Fig. 1: Flow Diagram of Ant Colony Optimization Scheduling Algorithm

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d823

2. LITERATURE SURVEY

OLB (Opportunistic Load Balancing) , begins by assigning the tasks randomly or in free order to available

resources on the cloud. It does so by assigning workload to nodes in free order. The implementation is very

easy as no computation is required and it does not consider any constraints while assigning tasks to

resources. For instance, it does not consider the expected execution time of task on different resources. Idea is

to ensure that all resources or machines get work.

MET (Minimum Execution Time) is also simple and easy to execute. The tasks are assigned to the machines

considering that it should take minimum time to execute the task. It seems very valid. But it does not take into

consideration the current load and availability of the machine. It simply assigns the task to the best machine.

This strategy can result in poor load balance across various machines. Load balance Min-Min (LBMM) [70] is

an example of Minimum Execution Time task scheduling algorithm.

MCT (Minimum Completion Time) is a strategy that works differently than the Minimum Execution Time.

Rather than considering the Execution Time, it works on Completion Time of the task. It may take more time

to execute, but the task is guaranteed to complete in minimum time as compared to other machines. Each task

is assigned arbitrarily to the machines which possesses the minimum completion time to complete this task.

However, the strategy fails to ensure that task takes minimum execution time.

MOMCT (Modified Ordered Minimum Completion Time) proposes an algorithm using which it is

possible to identify MCT (Minimum Completion Time) that allocates tasks in a random order to the minimum

completion time machine. It suggests an ordered approach to the MCT heuristic, which order tasks in

accordance to the mean difference of the completion time on each machine and the minimum completion time

machine.

Min-min is based on Completion Time of all tasks that are still waiting for the resource allocation. Idea is to

compute the matrix for minimum completion time of every task which is still waiting for resource allocation.

Task with minimum completion time is scheduled to the respective machine on which its completion time is

minimum. The task is then removed from the list of tasks that are waiting for resource allocation and the same

procedure is followed for all the remaining tasks in the list.

Min-max is also based on Completion Time of tasks and is quite similar to Min-min heuristic on the basis of

its implementation. Only difference between min-min and max-min is the selection of corresponding machine

where it should execute. It also has a set of all unscheduled tasks. Again, we compute the matrix for minimum

completion time of every task which is still waiting for resource allocation. But, rather than selecting the task

with overall minimum time, here the task with overall maximum completion time is scheduled the respective

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d824

machine on which its completion time is maximum. The task is then removed from the list of tasks that are

waiting for resource allocation and the same procedure is followed for all the remaining tasks in the list.

GA (Genetic Algorithm) is another popular heuristic strategy used to find near-optimal solution for complex

problems It is a population-based heuristic. First step of GA is to randomly initialize the population of

chromosomes. Objective function is then designed based on one or two parameters. One of the most widely used

QOS parameter is Makespan time. After getting the initial population, all chromosomes in the population are

evaluated on the basis on their respective fitness value (Makespan time). Next step is to perform a crossover

operation that selects a random pair of chromosomes of a task and picks a random point in first chromosome.

Allocation of resources is also exchanged between particular corresponding tasks. Last step is to perform

mutation operation. It randomly selects a chromosome and task within the chromosome and the task is then re-

assigned or re-allocated to the selected resource. The same process is repeated for number of iterations till the

stopping criteria is met, which it the objective function.

In paper Load balancing strategy has been implemented using Genetic Algorithm. Generally, the problem

of task scheduling in cloud computing is dynamic in nature, still at some points you have a certain set of tasks

to be assigned to available resources. In this paper, two vectors were used to represent the current load of the

VM’s at any given time and information related to the job submitted to the cloud. The focus of this paper was

to optimize the cost function. Simulation results shows that performance of load balancer using GA is much

better than other static algorithms.

In paper a cloud task scheduling policy based on Ant Colony Optimization (ACO) [38] algorithm has

been implemented and its performance is compared with different scheduling algorithms like First Come First

Served (FCFS) and Round-Robin (RR). In this paper, a probabilistic function on the basis of expected time to

compute for each task has been proposed. The probabilistic function takes into consideration the pheromone

concentration, transfer time of task, expected time to compute, length of each task, processing capabilities of

each Virtual machine including band width are considered. Then the paper also suggests a function for

updating the pheromone value. The pheromone value is updated after each tour by ant. Computed length after

each tour by an ant refers to the Makespan value. The function also considers the trail decay, i.e. decay of

pheromone concentration at each path. The main goal of these algorithms is minimizing the Makespan of a

given tasks set. Experimental results showed that cloud task scheduling based on ACO outperformed FCFS and

RR algorithms. Tasks varying in size from 100 to 100 are then scheduled using the Ant Colony Optimization

algorithm. Performance of the metaheuristic ACO is much better as compared to static algorithms like FCFS

and Roubd-Robin. But paper does not suggest any measure to improve the imbalance factor beyond the

implementation of evolutionary ACO algorithm. The algorithm does not consider parameters other than

Makespan time and also the probabilistic function used in this paper can be extended to consider other issues.

The probability function can be designed by considering different QoS parameters.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d825

3. Objective of the study

 To study and analyze various meta heuristic load balancing algorithms.

 To design efficient algorithm for providing system load balancing using Novel Hybrid (ACO & PSO)

based technique.

 To design efficient algorithm for providing the system load balancing using Novel GA technique.

 To compare the results of A2LB Algorithm with the proposed Hybrid (ACO & PSO) based technique

and Novel GA based technique for load balancing on the basis of:

 Over all response time

 Data Center Service Time

 Transfer Cost.

 To minimize the execution time for improving the resource utilization of the balanced machines by

using Novel Resource Aware Scheduling Algorithm.

 To compare the results of existing resource aware algorithm with the proposed Novel Resource

Aware Scheduling algorithm on the basis of:

 Over all response time

 Data Center Service Time

 Transfer Cost.

 4. RESULTS AND DISCUSSIONS

4.1 Performance comparison of First Come First Serve, Shortest Job First & Ant Colony

Optimization

Parameters Setting of CloudSim

The experiments are implemented with 10 data centers with 40VMs and 600-1000 tasks under the

simulation platform. The length of the task is from 20000 Million Instructions (MI) to 40000 MI. The

parameters setting of cloud simulator are shown in table 8.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d826

Table 1: Parameters Setting of Cloudsim for performance comparison of First Come First

Serve, Shortest Job First & Ant Colony Optimization

The implementation has been done using two approaches. In the first approach, size of VMhas been kept fixed and the

size of cloudlets is changed. In the second approach, size of cloudlets is fixed and the size of VM is changed. The experiment

result for the two approaches is given below:

Keeping the VM’s Fixed

First Come First Serve, Shortest Job First and Ant Colony Optimization have been implemented keeping the VM’s fixed to

40. Experiment was conducted by assigning cloudlets in range of 600 to 1000.

First come first serve has been implemented by assigning the cloudlets to the VM which is idle. It is implemented by

maintaining a queue which is automatically implemented by CloudSim. By default, the allocation done by CloudSim is

using FCFS.

Table2: Makespan Time (in seconds) using First Come First Serve with 40 VM’s

Scheduling

Algorithm

No. of Cloudlets

600 700 800 900 1000

First Come

First Serve

1730

2021

2233

2541

2702

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d827

Fig.2: Makespan using First Come first serve with 40 VM’s.

Shortest Job First selects the cloudlet with the smallest length from the cloudlets submitted to broker. There is no relation

between the cloudlets size and the VM’s configuration. The task is assigned to the idle VM on the basis of shortest length. It

can be implemented as round robin in which the tasks are assigned on the basis of length to the VM’s in round robin fashion.

Table 3: Makespan Time (in seconds) using Shortest Job First with 40 VM’s

Scheduling

Algorithm

No. of Cloudlets

600 700 800 900 1000

Shortest Job

First

1437

1687

1914

2151

2337

Fig.3: Makespan using Shortest Job First with 40 VM’s.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d828

Third Scheduling algorithm implemented is Ant Colony Optimization. The cloudlets are assigned to VM’s on the basis of

probabilistic function. There is a direct relation between the expected time of execution for each cloudlet corresponding to

every VM. Ant Colony Optimization (ACO) comes under the category of metaheuristic algorithms. The algorithm is based

on real ants and how they search for food. The ants travel from their colony to the food source. The ants leave pheromones as

they walk. Initially random ants select random paths. The pheromone they leave also evaporates but at lesser intensity. So,

the shortest path after some time is the one with highest pheromone intensity which leads all other ants to follow that path.

After a certain period, all ants choose that path and which happens to be the shortest path [45]. Ants during trips select the

best VM for each cloudlet. At the end of maximum number of iterations, the global best is selected as final allocation of

cloudlets to VM. All ants perform a trip and compute a solution. In the end you have multiple solutions available.

Fig.4: Makespan using Ant Colony Optimization with 40 VM’s.

Table 4: Makespan Time (in seconds) using Ant Colony Optimization with 40 VM’s

Scheduling

Algorithm

No. of Cloudlets

600 700 800 900 1000

Ant Colony

Optimization

1530 1672 1963 2233 2398

If you observe the table above, Ant colony optimization fails to reduce the Makespan time as compared to shortest job first.

The main reason can be that shortest job first algorithm for static implementation guaranteed to provide the optimized result.

Even though the shortest job first algorithm results in better Makespan time, the same cannot be used in practical scenario.

Comparison in the performance of 3 algorithms keeping the number of VM’s fixed can be analysed from the table & chart

below:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d829

Figure 5: Performance comparison between First Come first serve, Shortest Job First and Ant

Colony Optimization in terms of Makespan Time with 40 VM’s.

Table 5: Performance comparison in terms of Makespan Time (in seconds) between First Come

First Serve, Shortest Job First & Ant Colony Optimization with 40 VM’s

Scheduling

Algorithm

No. of Cloudlets

600 700 800 900 1000

First Come First

Serve
1730 2021 2233 2541 2702

Shortest Job First 1437 1687 1914 2151 2337

Ant Colony

Optimization
1530 1672 1963 2233 2398

Keeping the Cloudlets Fixed

In the second phase, number of cloudlets were fixed to 1000. The experiments were conducted by

changing the number of VM’s from 20 to 40.

Following is the chart for Makespan time using First Comer First Serve scheduling algorithm keeping

the number of cloudlets fixed to 1000:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d830

Fig.6: Makespan using First Come first serve with 1000 Cloudlets.

Table 6: Makespan Time (in seconds) using First Come First Serve with 1000 cloudlets

Scheduling

Algorithm

No. of VM's

20 25 30 35 40

First Come

First Serve
5177 3895 3624 2876 2703

Shortest job first is based on selection of task with minimum instructions. Following is the chart for Makespan time using

Shortest Job First scheduling algorithm keeping the number of cloudlets fixed to 1000:

Table 7: Makespan Time (in seconds) using Shortest Job First with 1000 Cloudlets

Scheduling

Algorithm

No. of VM's

20 25 30 35 40

Shortest Job

First
4661 3712 3097 2686 2326

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d831

Fig. 6: Makespan using Shortest Job First with 1000 cloudlets.

Following is the chart for Makespan time using Ant Colony Optimization algorithm keeping the number of cloudlets

fixed to 1000:

Fig.7: Makespan using Ant Colony Optimization with 1000 cloudlets.

Table 8: Makespan Time (in seconds) using Ant Colony Optimization with 1000 Cloudlets

Scheduling

Algorithm

No. of VM's

20

25

30

35

40

Ant Colony

Optimization

4430 3473 3095 2735 2387

Comparison in the performance of 3 algorithms keeping the number of cloudlets fixed can be analysed from the table & chart

below:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d832

Fig.8: Performance comparison between First Come first serve, Shortest Job First and Ant Colony Optimization in
terms of Makespan Time (in seconds) with 1000 cloudlets.

The Makespan time of shortest job first and ant colony optimization is almost same. There is very little to choose between

the two algorithms. The only difference is in terms of their applicability. The Ant colony optimization can be used in real life

scenario with complex problems where shortest job first can be used in offline scenario for small problems.

Table 9: Performance comparison in terms of Makespan Time (in seconds) between First Come

First Serve, Shortest Job First & Ant Colony Optimization with 1000 cloudlets

Scheduling

Algorithm

No. of VM's

20 25 30 35 40

First Come First

Serve

5177 3895 3624 2876 2703

Shortest Job First 4661 3712 3097 2686 2326

Ant Colony

Optimization

4430 3473 3095 2735 2387

It can be analyzed that SJF performs as good as ACO in terms of Makespan time. But SJF is

practically not implementable in real life dynamic environment. SJF generally results in starvation of

jobs with higher expected time to compute. There” is a need to look beyond algorithms like SJF when it

comes to implementing task scheduling in real time environment. There is not much of a gap in the

performance of ACO and SJF.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d833

But, this gap in the Makespan widens as you increase the number of cloudlets keeping the VMs

constant or when you decrease the VMs keeping the cloudlets” constant. ACO tends to produce better

results when the size of the cloudlets become larger and larger. Implementation of ACO depends greatly

on the probability function. In this implementation, the probability function only focused on the

Makespan time. It is possible to design the probability function of ACO by considering VM parameters

like bandwidth, RAM, storage.

Shortest job first can also be used, but in situations when the information related to all incoming

tasks is known in prior and the number of cloudlets to be scheduled is small in number. The algorithm

does not guarantee best results as capability of the VM is not considered while scheduling tasks. In

further experiments, performance comparison of different metaheuristic scheduling algorithms has been

done. These scheduling algorithms are Ant Colony Optimization and Particle Swarm Optimization.

Performance comparison of Ant Based Scheduling Algorithms (Autonomous Agent Based Load

Balancing Algorithm & Ant Colony Optimization Algorithm)

Autonomous Agent based Load Balancing (A2LB) algorithm was proposed by A. Singh et al. in 2015.

Autonomous agent-based load balancing algorithm (A2LB) tries to address the issues like optimizing

resource utilization, improving throughput, minimizing response time, dynamic resource scheduling

with scalability and reliability. A2LB works by distributing the resources in such a manner that the

available resources are utilized in a proper manner and load at all the virtual machines remain balanced.

A2LB mechanism comprises of three agents: Load agent, Channel gent and Migration Agent. Load and

channel agents are static agents whereas migration agent is an ant. The reason behind deploying ants is

their ability to choose shortest/best path to their destination. Ant agents are motivated from biological

ants which seek a path from their colonies to the food source

Basic difference between the two ant-based algorithms is that the ACO works on more

constraints and looks to find the best virtual machine for a particular cloudlet. Lots of

computations are performed. Whereas in case of A2LB, cloudlet is initially assigned randomly to any

virtual machine and only in case if it becomes unbalanced then the cloudlet is migrated to some other

machine. It may seem easy and not much computation is done, but once the virtual machines are loaded

to the fullest, the cloudlets are either always migrated from one machine to other or they keep waiting

for a virtual machine to be assigned to them.\Does A2LB perform better than ACO? To find answer to

this question, a comparative analysis of two algorithms is done. Difference between A2LB and ACO.

Both are Ant Based Scheduling Algorithms The experiments are implemented with 3 Data Centers

with 2 hosts each. 12VMs are created with 4 VMs per DC. Experiment was done with 200-500 tasks

under the simulation platform. The length of the task is from 20000 Million Instructions (MI) to

400000 MI. The parameters setting of cloud simulator are shown in Table 17.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d834

The Experiment is conducted by keeping the number of VM’s fixed. The arrival time for each task is

considered to be 0 for the computation of response time. Hence the Execution Start Time of each

cloudlet is its response time. Average response time is computer in the end by dividing the overall

response time with the total number of tasks. Makespan is computed as the Finish Time of” the last

cloudlet.

Table 10: Parameters Setting of Cloudsim for performance comparison of Ant Colony

Optimization algorithm & Autonomous Agent Based Load Balancing Algorithm
Following is the outcome of the experiment.

Response Time keeping the VM’s fixed to 12

Table: 11.Response Time (in seconds) using Ant Colony Optimization with 12 VM’s

Scheduling

Algorithm

No. of Cloudlets

200 300 400 500

Ant Colony

Optimization

156.5

166.1

172

200.6

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d835

Fig.9: Response time using Ant Colony Optimization with 12 VM’s.

Table 12: Response Time (in seconds) using Autonomous Agent Based Load Balancing algorithm

with 12 VM’s

Scheduling Algorithm
No. of Cloudlets

200 300 400 500

Autonomous Agent

Based Load Balancing
157.5 165.2 192.9 191.28

Fig.10: Response Time using Autonomous Agent Based Load Balancing algorithm with 12

VM’s

Comparison in the performance of 2 algorithms in terms of response time keeping the number of VM’s

fixed can be analysed from the table & chart below:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d836

Fig.11: Performance comparison in terms of Response Time between Ant Colony Optimization

& Autonomous Agent Based Load Balancing algorithm with 12 VM’s

Table 13: Performance comparison in terms of Response Time (in seconds) between Ant Colony

Optimization & Autonomous Agent Based Load Balancing algorithm with 12 VM’s

Scheduling Algorithm
No. of Cloudlets

200 300 400 500

Ant Colony Optimization 156.5 166.1 172 200.6

Autonomous Agent Based Load

Balancing
157.5 165.2 192.9 191.28

As you can see in Figure 31, the Response Time for both the algorithms is almost same. As the

number of cloudlets increase, there is some variation in the results. It was also observed that the

performance of A2LB varied quite a lot as the performance greatly depends on the initial random

allocation of resources to the tasks.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d837

Makespan Time keeping the VM’s fixed to 12

Fig.12: Makespan time using Ant Colony Optimization with 12 VM’s.

Table 14: Makespan Time (in seconds) using Ant Colony Optimization with 12 VM’s

Scheduling Algorithm
No. of Cloudlets

200 300 400 500

Ant Colony Optimization 522 564.1 600 604.4

Fig.13: Makespan Time using Autonomous Agent Based Load Balancing algorithm with 12

VM’s

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d838

Table 15 Makespan Time (in seconds) using Autonomous Agent Based Load Balancing algorithm

with 12 VM’s

Scheduling Algorithm
No. of Cloudlets

200 300 400 500

Autonomous Agent

Based Load Balancing
556.3 549.5 586.7 602.5

Comparison in the performance of 2 algorithms in terms of Makespan time keeping the number of

VM’s fixed can be analyzed from the table & chart below:

Table:15 Performance comparison in terms of Makespan Time (in seconds) between Ant Colony

Optimization & Autonomous Agent Based Load Balancing algorithm with 12 VM’s

Scheduling Algorithm
No. of Cloudlets

200 300 400 500

Ant Colony Optimization

522

564.1

600

604.4

Autonomous Agent

Based Load Balancing

556.3

549.5

586.7

602.5

Fig.14: Performance comparison in terms of Makespan Time (in seconds) between Ant Colony Optimization &

Autonomous Agent-Based Load Balancing algorithm with 12 VM’s

As you can see in Figure 34, the performance of ACO is quite steady, whereas the performance of

A2LB is unpredictable. Performance of both the algorithms is almost same even as your increase the

cloudlets to 500.

Performance of both the ant-based algorithms in term of response time and Makespan time is quite

similar. But the performance of A2LB greatly depends on how the initial allocation of resources to

tasks is done. Although A2LB seems to perform slightly better, but it is more time-consuming

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d839

algorithm and it involves migration of tasks. ACO in general does not perform any migration, whereas

A2LB migrates the tasks from the overloaded VM to other VM. Also, the A2LB is a resource aware

scheduling algorithm, whereas ACO only considers the Expected Time to Compute (ETC) for allocation

the resources to tasks. Performance of ACO can be further improved by adding resource utilization

parameters along with the ETC in its probability function.

Performance comparison of Ant Colony Optimization Scheduling Algorithm, Particle Swarm

Optimization Scheduling Algorithm & Genetic Algorithm

Table 16: Parameters Setting of Cloudsim for performance comparison of Ant Colony

Optimization, Particle Swarm Optimization & Genetic Algorithm

The 3 algorithms are different from each other in terms of their applicability, benefits and

challenges. GA belongs to the class of evolutionary algorithms, whereas ACO & PSO belong to the

class of swarm optimization algorithms. Experiments were conducted to compare the performance of 3

algorithms in terms of makespan time. Following are the results of the experiments.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d840

Table 17: Makespan Time (in seconds) using Ant Colony Optimization with 8 VM’s

Scheduling Algorithm
No. of Cloudlets

150 175 200 225 250

Ant Colony

Optimization (ACO)
270 309 325 355 403

Fig.15: Makespan time using Ant Colony Optimization with 8 VM’s.

 CONCLUSION & FUTURE WORK

Cloud computing offers efficient and affordable on-demand services and resources, utilizing virtualized

resources. It's an extension of existing technologies like parallel and grid computing, providing services over

the internet through an infrastructure and policies. Cloud task scheduling is a crucial research area, aiming to

reduce resource underutilization and ensure timely task completion. Load balancing assigns equal work to

machines based on their capabilities. For example, minimize cost, maximize profit, minimize execution time,

maximize throughput. Metaheuristic algorithms are used to optimize task scheduling on cloud resources, but

their results are only near-optimal in time, indicating potential for improvement.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d841

In this Thesis an “Improved Resource Aware Hybrid Meta-Heuristic Scheduling Algorithm” is proposed for

solving the problem of task scheduling in cloud. The main objective of this algorithm is to provide the updated

load on each resource so that the choice of resources for next set of tasks is based on resource awareness. In

addition to that, the proposed algorithm focuses on total execution time of each task on a resource individually

on the basis of two parameters. The total execution time is based on execution/computation time and the

transfer time/cost. The proposed algorithm is hybrid of Ant Colony Optimization and Particle Swarm

Optimization. The results show that the Makespan time of the proposed algorithm is better than the Meta-

Heuristic algorithms (ACO, PSO), A2LB (Autonomous Agent based Load balancing and Hybrid of Ant

Colony Optimization & Particle Swarm Optimization proposed in this thesis work only. Also, the transfer cost

was computed for all the algorithms and the transfer cost of proposed algorithm is much lesser as compared to

Meta-Heuristic algorithms (ACO, PSO), A2LB (Autonomous Agent based Load balancing and Hybrid of Ant

Colony Optimization & Particle Swarm Optimization proposed in this thesis work only. The proposed algorithm

also results in less response time as compared to other algorithms. Hence it can be concluded that the

performance of the proposed algorithm in terms of Makespan time, Transfer cost & Response time is much

better then Meta-Heuristic algorithms (ACO, PSO), A2LB (Autonomous Agent based Load balancing and

Hybrid of Ant Colony Optimization & Particle Swarm Optimization proposed in this thesis work only.

REFERENCES

[1] Joly, M. M., Verstraete, T., & Paniagua, G. (2014). Integrated multifidelity, multidisciplinary

evolutionary design optimization of counterrotating compressors, Integrated Computer Aided

Engineering, 21(3), 249-261.

[2] Kociecki, M., & Adeli, H. (2014). Two-phase genetic algorithm for topology optimization of

freeform steel space-frame roof structures with complex curvatures, Engineering Applications of

Artificial Intelligence, 32(1), 218–27.

[3] Siddique, N., & Adeli, H. (2013). Computational intelligence: synergies of fuzzy logic, neural networks

and evolutionary computing. West Sussex, Chichester: Wiley.

[4] Lopez-Rubio, E., Palomo, E. J., & Dominguez E. (2014). Bregman Divergences for Growing Hierarchical

Self-Organizing Networks, International Journal of Neural Networks, 24(4), 1-20.

[5] Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self

organization in biological systems, New Jersey, NJ: Princeton University Press.

[6] Balusamy, B., Sridhar, J., Damodaran, D., & Krishna P. V. (2015). Bio-inspired algorithms for cloud

computing: A Review. International Journal of Innovative Computing and Applications, 6(3), 181-202.

[7] Pinto, T. A., Runkler, T. A., & Sousa, J. M. (2005). Wasp swarm optimization of logistic systems.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d842

Adaptive and Natural Computing Algorithms, 264–267.

[8] Goss, S., Aron, S., Deneubourg, J. L., & Pasteels, J. M. (1989). Self-organized shortcuts in the Argentine

ant, Naturwissenschaften (The Science of Nature), 76(12), 579–581.

[9] Corne, D., Dorigo, M., & Glover, F. (1999). New Ideas in Optimization. UK, Maidenhead: McGraw-Hill

Ltd.

[10] Dorigo, M., & Gambardella, L. (1997). Ant colony system: A Cooperative Learning Approach to the

Traveling Salesman Problem. IEEE Transactions on Evolutionary Computation, 1(1), 53–66.

[11] Bilchev, G., & Parmee, I. C. (1995). The ant colony metaphor for searching continuous design spaces,

Evolutionary Computing (Springer), 993, 25–39.

[12] Kennedy, J., & Eberhart R. (1995). Particle Swarm Optimization, presented at IEEE International

Conference on Neural Networks, Perth, New York: IEEE.

[13] Dorigo, M. (1992). Optimization, learning and natural algorithms, University of Politecnico di Milano,

Italy.

[14] Karger, D., Stein, C., & Wein, J. (2010). Scheduling Algorithms. In Atallah, M. J. & Blanton M. (Eds.)

Algorithms and Theory of Computation Handbook: Special Topics and Techniques. (pp. 20-20), Boca

Rotan, BC: Chapman & Hall/CRC.

[15] Himani, Sidhu, H. S. (2014). Comparative Analysis of Scheduling Algorithms of CloudSim in Cloud

Computing. International Journal of Computer Applications, 97(16), 29-33.

[16] Braun, & Tracy, D. (2001). A comparison of eleven static heuristics for mapping a class of independent

tasks onto heterogeneous distributed computing systems, Journal of Parallel and Distributed

computing, 61(6), 810 – 837.

[17] Yu J., Buyya R., Ramamohanarao K. (2008) Workflow Scheduling Algorithms for Grid Computing. In:

Xhafa F., Abraham A. (eds) Metaheuristics for Scheduling in Distributed Computing Environments.

(pp. 173-221), Brelin, Berlin: Springer.

[18] Kalra, M., & Singh, S. (2015). A Review of Metaheuristic Scheduling Technique in Cloud Computing,

Egyptian Informatics Journal (Cairo University), 16(30), 275- 295.

[19] Xhafa, F., and Abraham, A. (2010). Computational Models and Heuristic Methods for Grid Scheduling

Problems. Future Generation Computer System, 26(1), 608-621.

[20] Dorigo, M., Stutzle, T. (2004). Ant colony optimization. Cambridge, Cambridge: MIT Press.

[21] Singh, G., & Kaur, A. (2015). Bio Inspired Algorithms: An Efficient Approach for Resource Scheduling in

Cloud Computing, International Journal of Computer Applications, 116(10), 16-21.

[22] Kousalya, K. (2009). To improve ant algorithm’s grid scheduling using local search. International Journal

Cognitive Computation, 7(1), 47–57.

http://www.ijcrt.org/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=488968

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d843

[23] Wielenga, G. (2014, August 5), The top 10 NetBeans features according to its users Retrievd from

https://jaxenter.com/netbeans/the-top-10-netbeans-features- according-to-its-users.

[24] Selvaraj, S., & Jaquline, J. (2016), Ant Colony Optimization Algorithm for Scheduling Cloud Tasks,

International Journal of Computer Technology & Applications, 7(3), 491-494.

[25] Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012). Task scheduling optimization in cloud computing based on

heuristic Algorithm, Journal of Networks, 7(1), 547–553.

[26] Zhang, L., Chen, Y., & Sun, R. (2008). A Task Scheduling Algorithm based on PSO for Grid Computing,

International Journal of Computational Intelligence Research, 4(1), 37–43.

[27] Pandey, S., Wu, L., & Buyya, R. (2010). A Particle Swarm Optimization-Based Heuristic for Scheduling

Workflow Applications in Cloud Computing Environments, presented at 24th IEEE International

Conference on Advanced Information Networking and Applications, 20-23 April 2010, Perth, IEEE.

[28] Wu, Z., Ni, Z., Gu, L., & Liu, X. (2010). A Revised Discrete Particle Swarm Optimization for Cloud

Workflow Scheduling, presented at International Conference on Computational Intelligence and

Security, 11-14 Dec. 2010, China, IEEE.

[29] Sossa, M. R., & Buyya, R. (2014). Deadline based resource provisioning and scheduling algorithm for

scientific workflows on clouds. IEEE Transactions on Cloud Computing, 2(2), 222– 235.

[30] Xue, S., & Wu, W. (2012). Scheduling workflow in cloud computing based on hybrid particle swarm

algorithm. Indonesian Journal of Electrical Engineering, 10(7), 1560-1566.

[31] Pooranian, Z., Shojafar, M., Abawajy, J. H., & Abraham, A. (2015). An efficient meta-heuristic algorithm

for grid computing. Journal of Combinatorial Optimization- Springer, 30(3), 413-434.

[32] Gomathi, B., & Krishnasamy, K. (2013). Task Scheduling Algorithm Based on Hybrid Particle Swarm

Optimization in Cloud Computing Environment. Journal of Theoretical and Applied Information

Technology, 55(1), 33–38.

[33] Izakian H., Tork Ladani B., Zamanifar K., Abraham A. (2009) A Novel Particle Swarm Optimization

Approach for Grid Job Scheduling. In: Prasad S.K., Routray S., Khurana R., Sahni S. (eds) Information

Systems, Technology and Management. ICISTM 2009. Communications in Computer and Information

Science, vol 31. Springer, Berlin, Heidelberg.

[34] Abdi, S., Motamedi, S. A., & Sharifian, S. (2014). Task Scheduling Using Modified iPSO Algorithm In

Cloud Computing Environment. presented at International Conference on Machine Learning, Electrical

and Mechanical Engineering, January 8-9, UAE, IEEE.

[35] Clark, T. (2017, December 18). Search Algorithm Series: (PSO) Particle Swarm Optimization. Retrieved

from https://medium.com/@iamterryclark/swarm-intelli- eb5e46eda0c3.

http://www.ijcrt.org/
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5473893
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5473893
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5473893
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5692951
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5692951
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5692951
https://medium.com/%40iamterryclark/swarm-intelli-

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d844

[36] Eberhart, & Shi, Y. (2001). Particle swarm optimization: developments, applications and resources.

presented at Congress on Evolutionary Computation, May 27-30, South Korea, IEEE.

[37] Singh, A., Juneja, D., & Malhotra, M. (2015). Autonomous Agent Based Load Balancing Algorithm in

Cloud Computing. Procedia Computer Science, 45(1), 832 – 841.

[38] Tawfeek, M., El-Sisi, A., Keshk, A., & Torkey, F. (2015). Cloud Task Scheduling Based on Ant Colony

Optimization. The International Arab Journal of Information Technology, 12(2), 129-137.

[39] Ghribi, C., Hadji, M., & Zeghlache D. (2013). Energy Efficient VM Scheduling for Cloud Data Centers:

Exact Allocation and Migration Algorithms, presented at 13th IEEE/ACM International Symposium on

Cluster, Cloud, and Grid Computing, May 13-16, Delft, IEEE.

[40] Developing Applications with NetBeans IDE. (2013, October 18). Retrieved from

https://docs.oracle.com/cd/E40938_01/doc.74/e40142/gs_nbeans.htm.

[41] Thaman, J., & Singh, M. (2016). Current Perspective in Task Scheduling Techniques in cloud Computing: A

Review, International Journal in Foundations of Computer Science & Technology, 6(1), 65-85.

[42] Arian, Y., & Levy, Y. (1992). Algorithms for Generalized Round Robin Routing. Operations Research

Letters, 12(5), 313-319.

[43] Kamalakar, M., & Moulika, T. (2015). A Priority Based Job Scheduling Algorithm in Cloud Computing.

International Journal of Innovative Technologies, 3(1), 19-21.

[44] Selvarani, S., & Sadhasivam, G. S. (2010). Improved Cost-Based Algorithm for Task Scheduling In Cloud

Computing. presented at IEEE International Conference on Computational Intelligence and Computing

Research, December 28-29, Coimbatore, IEEE.

[45] Wang, S. C., Yan, K. Q., Liao, W. P., & Wang, S. S. (2010). Towards a load balancing in a three-level

cloud computing network, presented at 3rd International Conference on Computer Science and

Information Technology (ICCSIT), July 9-11, Chengdu, IEEE.

http://www.ijcrt.org/

