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Abstract  
 

In this paper, presentation of different static & stochastic meta-heuristic algorithms is compared with the 

proposed algorithm. Static algorithms are easy to implement but they fail to provide even acceptable solutions. 

Ant based algorithms are very popular for task scheduling related problems in cloud computing. 

Autonomous agent-based  load balancing algorithm (A2LB) is a dynamic agent based resource scheduling 

algorithm that provides scalability and reliability by offering better resource utilization, and minimum response 

time, but it results in high degree of migration. Particle Swarm Optimization (PSO) is a swarm- based meta-

heuristic algorithm influenced by the social behaviour of animals such as bird or fish. PSO has fewer primitive 

mathematical operators than other metaheuristic algorithms which results in lesser convergence time and is 

applied to continuous value problems. Ant Colony Optimization (ACO) is also a swarm based meta-heuristic 

algorithm inspired by the behaviour of real ants looking for the shortest path between their colonies and a 

source of food. Ant Colony Optimization algorithm is suited for solving discrete problems and can be used in 

solving the cloud computing resource management and job scheduling. Algorithm proposed in thesis tries to 

overcome the limitations of ACO & PSO.  
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1. INTRODUCTION 

Optimization problems are prevalent in all domains and involve finding optimal or near-optimal solutions. 

Large problems often require a sequential approach, focusing on objective functions. Researchers define steps 

for problem recognition, model construction, and solution evaluation [17].  Cloud task scheduling is an 

optimization problem involving efficient resource allocation to achieve a desired objective. The objective 

function determines the best alternative, and even slight changes can lead to different solutions. Developers 

face numerous optimization problems, requiring them to choose the optimal or near-optimal option based on 

evaluation criteria. These problems typically aim to maximize or minimize the evaluation function. 

Optimization problems have the following characteristics: 

 Numbers of decision alternatives are available from which one alternative is selected. 

 Selection of the alternate is subject to constraints that limit the number of available alternatives. 

 Evaluation criteria is directly affected by choice of decision alternate.  

 An evaluation function defined on the decision alternatives helps to describe the effect of the different 

decision alternatives. 

 Decision alternate for an optimization problem should be based on all available constraints and the one 

that maximizes/minimizes the evaluation function. 

 

1.2 Ant Colony Optimization 
 

Ant Colony Optimization (ACO) comes under the category of met heuristic algorithms. The algorithm is 

based on real ants and how they search for food. The ants travel from their colony to the food source. The 

ants leave pheromones as they walk. Initially random ants select random paths. The pheromone they 

leave also evaporates but at lesser intensity. So, the shortest path after some time is the one with highest 

pheromone intensity which leads all other ants to follow that path. After a certain period, all ants choose 

that path and which happens to be the shortest path [45]. 

Following is the pseudo code for implementation of ACO. [63] 

Pseudo Code 1: ACO algorithm 

//Input 

Input: List of Cloudlet (Tasks) and List of VMs 

//Output 

Output: The best solution for tasks allocation on VMs Steps: 

//Pseudo Code 
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1. Initialize: 

Set Current_iteration_t=1. 

Set Current_optimal_solution=null. 

Set Initial value τij(t)=c for each path between tasks and VMs 

//random assignment of ants on VM 

2. Place m ants on the starting VMs randomly. 

// selection of VM for each task 

3. For k:=1 to m do 

Place the starting VM of the k-th ant in tabuk. Do ants_trip while all ants don't end their trips 

Every ant chooses the VM for the next task. 

Insert the selected VM to tabuk. 

End Do 

// updating the optimal solution 

4. For k:=1 to m do 

Compute the length Lk of the tour described by the k-th ant according to Equation Update the 

current_optimal_solution with the best founded solution. 

5. For every edge (i, j), apply the local pheromone. 

6. Apply global pheromone update according to Equation 7. 

7. Increment Current_iteration_t by one. 

// check if maximum iterations done 

8. If (Current_iteration_t < tmax) Empty all tabu lists. 

Goto step 2 Else 

Print current_optimal_solution. 

End If” 

7. Return 

Pseudo code 2: Scheduling based ACO algorithm 

//Input 

Input: Incoming Cloudlets and VMs List 

//Output 

Output: Print “scheduling completed and waiting for more Cloudlets”Steps: 

//Pseudo Code 

1. Set Cloudlet List=null and temp_List_of_Cloudlet=null 
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2. Put any incoming Cloudlets in Cloudlet List in order of their arriving time. 

3. do ACO_P while Cloudlet List not empty or there are more incoming Cloudlets Set n= size of VMs 

list 

// if the no. of cloudlets left more than VMs 

if (size of Cloudlet List greater than n) 

Transfer the first arrived n Cloudlets.from Cloudlet List and put them on  

temp_List_of_Cloudlet 

// if the no. of cloudlets left less than VMs 

Else 

Transfer all Cloudlets.from Cloudlet List and put them on temp_List_of_Cloudlet 
end If 

Execute ACO procedure with input temp_List_of_Cloudlet and n end Do 
 

 

 
 

Fig. 1: Flow Diagram of Ant Colony Optimization Scheduling Algorithm 

http://www.ijcrt.org/


www.ijcrt.org                                                            © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882 

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d823 
 

2. LITERATURE SURVEY 

OLB (Opportunistic Load Balancing) , begins by assigning the tasks randomly or in free order to available 

resources on the cloud. It does so by assigning workload to nodes in free order. The implementation is very 

easy as no computation is required and it does not consider any constraints while assigning tasks to 

resources. For instance, it does not consider the expected execution time of task on different resources. Idea is 

to ensure that all resources or machines get work.  

MET (Minimum Execution Time)  is also simple and easy to execute. The tasks are assigned to the machines 

considering that it should take minimum time to execute the task. It seems very valid. But it does not take into 

consideration the current load and availability of the machine. It simply assigns the task to the best machine. 

This strategy can result in poor load balance across various machines. Load balance Min-Min (LBMM) [70] is 

an example of Minimum Execution Time task scheduling algorithm.  

MCT (Minimum Completion Time) is a strategy that works differently than the Minimum Execution Time. 

Rather than considering the Execution Time, it works on Completion Time of the task. It may take more time 

to execute, but the task is guaranteed to complete in minimum time as compared to other machines. Each task 

is assigned arbitrarily to the machines which possesses the minimum completion time to complete this task. 

However, the strategy fails to ensure that task takes minimum execution time. 

MOMCT (Modified Ordered Minimum Completion Time)  proposes an algorithm using which it is 

possible to identify MCT (Minimum Completion Time) that allocates tasks in a random order to the minimum 

completion time machine. It suggests an ordered approach to the MCT heuristic, which order tasks in 

accordance to the mean difference of the completion time on each machine and the minimum completion time 

machine. 

 

Min-min is based on Completion Time of all tasks that are still waiting for the resource allocation. Idea is to 

compute the matrix for minimum completion time of every task which is still waiting for resource allocation. 

Task with minimum completion time is scheduled to the respective machine on which its completion time is 

minimum. The task is then removed from the list of tasks that are waiting for resource allocation and the same 

procedure is followed for all the remaining tasks in the list. 

Min-max  is also based on Completion Time of tasks and is quite similar to Min-min heuristic on the basis of 

its implementation. Only difference between min-min and max-min is the selection of corresponding machine 

where it should execute. It also has a set of all unscheduled tasks. Again, we compute the matrix for minimum 

completion time of every task which is still waiting for resource allocation. But, rather than selecting the task 

with overall minimum time, here the task with overall maximum completion time is scheduled the respective 
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machine on which its completion time is maximum. The task is then removed from the list of tasks that are 

waiting for resource allocation and the same procedure is followed for all the remaining tasks in the list. 

GA (Genetic Algorithm)  is another popular heuristic strategy used to find near-optimal solution for complex 

problems It is a population-based heuristic. First step of GA is to randomly initialize the population of 

chromosomes. Objective function is then designed based on one or two parameters. One of the most widely used 

QOS parameter is Makespan time. After getting the initial population, all chromosomes in the population are 

evaluated on the basis on their respective fitness value (Makespan time). Next step is to perform a crossover 

operation that selects a random pair of chromosomes of a task and picks a random point in first chromosome. 

Allocation of resources is also exchanged between particular corresponding tasks. Last step is to perform 

mutation operation. It randomly selects a chromosome and task within the chromosome and the task is then re-

assigned or re-allocated to the selected resource. The same process is repeated for number of iterations till the 

stopping criteria is met, which it the objective function. 

In paper Load balancing strategy has been implemented using Genetic Algorithm. Generally, the problem 

of task scheduling in cloud computing is dynamic in nature, still at some points you have a certain set of tasks 

to be assigned to available resources. In this paper, two vectors were used to represent the current load of the 

VM’s at any given time and information related to the job submitted to the cloud. The focus of this paper was 

to optimize the cost function. Simulation results shows that performance of load balancer using GA is much 

better than other static algorithms. 

In paper a cloud task scheduling policy based on Ant Colony Optimization (ACO) [38] algorithm has 

been implemented and its performance is compared with different scheduling algorithms like First Come First 

Served (FCFS) and Round-Robin (RR). In this paper, a probabilistic function on the basis of expected time to 

compute for each task has been proposed. The probabilistic function takes into consideration the pheromone 

concentration, transfer time of task, expected time to compute, length of each task, processing capabilities of 

each Virtual machine including band width are considered. Then the paper also suggests a function for 

updating the pheromone value. The pheromone value is updated after each tour by ant. Computed length after 

each tour by an ant refers to the Makespan value. The function also considers the trail decay, i.e. decay of 

pheromone concentration at each path.  The main goal of these algorithms is minimizing the Makespan of a 

given tasks set. Experimental results showed that cloud task scheduling based on ACO outperformed FCFS and 

RR algorithms. Tasks varying in size from 100 to 100 are then scheduled using the Ant Colony Optimization 

algorithm. Performance of the metaheuristic ACO is much better as compared to static algorithms like FCFS 

and Roubd-Robin. But paper does not suggest any measure to improve the imbalance factor beyond the 

implementation of evolutionary ACO algorithm. The algorithm does not consider parameters other than 

Makespan time and also the probabilistic function used in this paper can be extended to consider other issues. 

The probability function can be designed by considering different QoS parameters. 
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3. Objective of the study 

 To study and analyze various meta heuristic load balancing algorithms. 

 To design efficient algorithm for providing system load balancing using Novel Hybrid (ACO & PSO) 

based technique. 

 To design efficient algorithm for providing the system load balancing using Novel GA technique. 

 To compare the results of A2LB Algorithm with the proposed Hybrid (ACO & PSO) based technique 

and Novel GA based technique for load balancing on the basis of:  

 Over all response time 

 Data Center Service Time 

 Transfer Cost. 

 To minimize the execution time for improving the resource utilization of the balanced machines by 

using Novel Resource Aware Scheduling Algorithm. 

 To compare the results of existing resource aware algorithm with the proposed Novel Resource 

Aware Scheduling algorithm on the basis of: 

 Over all response time 

 Data Center Service Time 

 Transfer Cost. 

 

   4. RESULTS AND DISCUSSIONS 

 

4.1 Performance comparison of First Come First Serve, Shortest Job First & Ant Colony 

Optimization 

Parameters Setting of CloudSim 

The experiments are implemented with 10 data centers with 40VMs and 600-1000 tasks under the 

simulation platform. The length of the task is from 20000 Million Instructions (MI) to 40000 MI. The 

parameters setting of cloud simulator are shown in table 8. 
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Table 1: Parameters Setting of Cloudsim for performance comparison of First Come First 

Serve, Shortest Job First & Ant Colony Optimization 

The implementation has been done using two approaches. In the first approach, size of VMhas been kept fixed and the 

size of cloudlets is changed. In the second approach, size of cloudlets is fixed and the size of VM is changed. The experiment 

result for the two approaches is given below: 

Keeping the VM’s Fixed 

First Come First Serve, Shortest Job First and Ant Colony Optimization have been implemented keeping the VM’s fixed to 

40. Experiment was conducted by assigning cloudlets in range of 600 to 1000. 

First come first serve has been implemented by assigning the cloudlets to the VM which is idle. It is implemented by 

maintaining a queue which is automatically implemented by CloudSim. By default, the allocation done by CloudSim is 

using FCFS. 

Table2: Makespan Time (in seconds) using First Come First Serve with 40 VM’s 
 

Scheduling 

Algorithm 

No. of Cloudlets 

600 700 800 900 1000 

First Come 

First Serve 

 
1730 

 
2021 

 
2233 

 
2541 

 
2702 
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Fig.2: Makespan using First Come first serve with 40 VM’s. 

Shortest Job First selects the cloudlet with the smallest length from the cloudlets submitted to broker. There is no relation 

between the cloudlets size and the VM’s configuration. The task is assigned to the idle VM on the basis of shortest length. It 

can be implemented as round robin in which the tasks are assigned on the basis of length to the VM’s in round robin fashion. 

Table 3: Makespan Time (in seconds) using Shortest Job First with 40 VM’s 
 

Scheduling 

Algorithm 

No. of Cloudlets 

600 700 800 900 1000 

Shortest Job 

First 

 

 
1437 

 

 
1687 

 

 
1914 

 

 
2151 

 

 
2337 

Fig.3: Makespan using Shortest Job First with 40 VM’s. 
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Third Scheduling algorithm implemented is Ant Colony Optimization. The cloudlets are assigned to VM’s on the basis of 

probabilistic function. There is a direct relation between the expected time of execution for each cloudlet corresponding to 

every VM. Ant Colony Optimization (ACO) comes under the category of metaheuristic algorithms. The algorithm is based 

on real ants and how they search for food. The ants travel from their colony to the food source. The ants leave pheromones as 

they walk. Initially random ants select random paths. The pheromone they leave also evaporates but at lesser intensity. So, 

the shortest path after some time is the one with highest pheromone intensity which leads all other ants to follow that path. 

After a certain period, all ants choose that path and which happens to be the shortest path [45]. Ants during trips select the 

best VM for each cloudlet. At the end of maximum number of iterations, the global best is selected as final allocation of 

cloudlets to VM. All ants perform a trip and compute a solution. In the end you have multiple solutions available. 

Fig.4: Makespan using Ant Colony Optimization with 40 VM’s. 

Table 4: Makespan Time (in seconds) using Ant Colony Optimization with 40 VM’s 
 

Scheduling 

Algorithm 

No. of Cloudlets 

600 700 800 900 1000 

Ant Colony 

Optimization 

1530 1672 1963 2233 2398 

If you observe the table above, Ant colony optimization fails to reduce the Makespan time as compared to shortest job first. 

The main reason can be that shortest job first algorithm for static implementation guaranteed to provide the optimized result. 

Even though the shortest job first algorithm results in better Makespan time, the same cannot be used in practical scenario. 

Comparison in the performance of 3 algorithms keeping the number of VM’s fixed can be analysed from the table & chart 

below: 
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Figure 5: Performance comparison between First Come first serve, Shortest Job First and Ant 

Colony Optimization in terms of Makespan Time with 40 VM’s. 

Table 5: Performance comparison in terms of Makespan Time (in seconds) between First Come 

First Serve, Shortest Job First & Ant Colony Optimization with 40 VM’s 

Scheduling 

Algorithm 

No. of Cloudlets 

600 700 800 900 1000 

First Come First 

Serve 
1730 2021 2233 2541 2702 

Shortest Job First 1437 1687 1914 2151 2337 

Ant Colony 

Optimization 
1530 1672 1963 2233 2398 

 

 

Keeping the Cloudlets Fixed 

In the second phase, number of cloudlets were fixed to 1000. The experiments were conducted by 

changing the number of VM’s from 20 to 40.  

Following is the chart for Makespan time using First Comer First Serve scheduling algorithm keeping 

the number of cloudlets fixed to 1000: 
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Fig.6: Makespan using First Come first serve with 1000 Cloudlets. 

Table 6: Makespan Time (in seconds) using First Come First Serve with 1000 cloudlets 
 

Scheduling 

Algorithm 

No. of VM's 

20 25 30 35 40 

First Come 

First Serve 
5177 3895 3624 2876 2703 

Shortest job first is based on selection of task with minimum instructions. Following is the chart for Makespan time using 

Shortest Job First scheduling algorithm keeping the number of cloudlets fixed to 1000: 

 

 

 

 

Table 7: Makespan Time (in seconds) using Shortest Job First with 1000 Cloudlets 
 

Scheduling 

Algorithm 

No. of VM's 

20 25 30 35 40 

Shortest Job 

First 
4661 3712 3097 2686 2326 
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Fig. 6: Makespan using Shortest Job First with 1000 cloudlets. 

 
Following is the chart for Makespan time using Ant Colony Optimization algorithm keeping the number of cloudlets 

fixed to 1000: 

Fig.7: Makespan using Ant Colony Optimization with 1000 cloudlets. 

Table 8: Makespan Time (in seconds) using Ant Colony Optimization with 1000 Cloudlets 

 

Scheduling 

Algorithm 

No. of VM's 

 

20 

 

25 

 

30 

 

35 

 

40 

Ant Colony 

Optimization 

4430 3473 3095 2735 2387 

 
Comparison in the performance of 3 algorithms keeping the number of cloudlets fixed can be analysed from the table & chart 

below: 
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Fig.8: Performance comparison between First Come first serve, Shortest Job First and Ant Colony Optimization in 
terms of Makespan Time (in seconds) with 1000 cloudlets. 

The Makespan time of shortest job first and ant colony optimization is almost same. There is very little to choose between 

the two algorithms. The only difference is in terms of their applicability. The Ant colony optimization can be used in real life 

scenario with complex problems where shortest job first can be used in offline scenario for small problems. 

 

 

 

 

Table 9: Performance comparison in terms of Makespan Time (in seconds) between First Come 

First Serve, Shortest Job First & Ant Colony Optimization with 1000 cloudlets 

Scheduling 

Algorithm 

No. of VM's 

20 25 30 35 40 

First Come First 

Serve 

5177 3895 3624 2876 2703 

Shortest Job First 4661 3712 3097 2686 2326 

Ant Colony 

Optimization 

4430 3473 3095 2735 2387 

It can be analyzed that SJF performs as good as ACO in terms of Makespan time. But SJF is 

practically not implementable in real life dynamic environment. SJF generally results in starvation of 

jobs with higher expected time to compute. There” is a need to look beyond algorithms like SJF when it 

comes to implementing task scheduling in real time environment. There is not much of a gap in the 

performance of ACO and SJF. 
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But, this gap in the Makespan widens as you increase the number of cloudlets keeping the VMs 

constant or when you decrease the VMs keeping the cloudlets” constant. ACO tends to produce better 

results when the size of the cloudlets become larger and larger. Implementation of ACO depends greatly 

on the probability function. In this implementation, the probability function only focused on the 

Makespan time. It is possible to design the probability function of ACO by considering VM parameters 

like bandwidth, RAM, storage. 

Shortest job first can also be used, but in situations when the information related to all incoming 

tasks is known in prior and the number of cloudlets to be scheduled is small in number. The algorithm 

does not guarantee best results as capability of the VM is not considered while scheduling tasks. In 

further experiments, performance comparison of different metaheuristic scheduling algorithms has been 

done. These scheduling algorithms are Ant Colony Optimization and Particle Swarm Optimization. 

Performance comparison of Ant Based Scheduling Algorithms (Autonomous Agent Based Load 

Balancing Algorithm & Ant Colony Optimization Algorithm) 

Autonomous Agent based Load Balancing (A2LB) algorithm was proposed by A. Singh et al. in 2015. 

Autonomous agent-based load balancing algorithm (A2LB) tries to address the issues like optimizing 

resource utilization, improving throughput, minimizing response time, dynamic resource scheduling 

with scalability and reliability. A2LB works by distributing the resources in such a manner that the 

available resources are utilized in a proper manner and load at all the virtual machines remain balanced. 

A2LB mechanism comprises of three agents: Load agent, Channel gent and Migration Agent. Load and 

channel agents are static agents whereas migration agent is an ant. The reason behind deploying ants is 

their ability to choose shortest/best path to their destination. Ant agents are motivated from biological 

ants which seek a path from their colonies  to the food source  

Basic difference between the two ant-based algorithms is that the ACO works on more 

constraints and looks to find the best virtual machine for a particular cloudlet. Lots of 

computations are performed. Whereas in case of A2LB, cloudlet is initially assigned randomly to any 

virtual machine and only in case if it becomes unbalanced then the cloudlet is migrated to some other 

machine. It may seem easy and not much computation is done, but once the virtual machines are loaded 

to the fullest, the cloudlets are either always migrated from one machine to other or they keep waiting 

for a virtual machine to be assigned to them.\Does A2LB perform better than ACO? To find answer to 

this question, a comparative analysis of two algorithms is done. Difference between A2LB and ACO. 

Both are Ant Based Scheduling Algorithms The experiments are implemented with 3 Data Centers 

with 2 hosts each. 12VMs are created with 4 VMs per DC. Experiment was done with 200-500 tasks 

under the simulation platform. The length of the task is from 20000 Million Instructions (MI) to 

400000 MI. The parameters setting of cloud simulator are shown in Table 17. 
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The Experiment is conducted by keeping the number of VM’s fixed. The arrival time for each task is 

considered to be 0 for the computation of response time. Hence the Execution Start Time of each 

cloudlet is its response time. Average response time is computer in the end by dividing the overall 

response time with the total number of tasks. Makespan is computed as the Finish Time of” the last 

cloudlet. 

Table 10: Parameters Setting of Cloudsim for performance comparison of Ant Colony 

Optimization algorithm & Autonomous Agent Based Load Balancing Algorithm 
Following is the outcome of the experiment. 

Response Time keeping the VM’s fixed to 12 

Table: 11.Response Time (in seconds) using Ant Colony Optimization with 12 VM’s 
 

Scheduling 

Algorithm 

No. of Cloudlets 

200 300 400 500 

Ant Colony 

Optimization 
 

156.5 

 
166.1 

 
172 

 
200.6 
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Fig.9: Response time using Ant Colony Optimization with 12 VM’s. 

 

Table 12: Response Time (in seconds) using Autonomous Agent Based Load Balancing algorithm 

with 12 VM’s 

Scheduling Algorithm 
No. of Cloudlets 

200 300 400 500 

Autonomous Agent 

Based Load Balancing 
157.5 165.2 192.9 191.28 

 

Fig.10: Response Time using Autonomous Agent Based Load Balancing algorithm with 12 

VM’s 

 

Comparison in the performance of 2 algorithms in terms of response time keeping the number of VM’s 

fixed can be analysed from the table & chart below: 
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Fig.11: Performance comparison in terms of Response Time between Ant Colony Optimization 

& Autonomous Agent Based Load Balancing algorithm with 12 VM’s 

Table 13: Performance comparison in terms of Response Time (in seconds) between Ant Colony 

Optimization & Autonomous Agent Based Load Balancing algorithm with 12 VM’s 

Scheduling Algorithm 
No. of Cloudlets 

200 300 400 500 

Ant Colony Optimization 156.5 166.1 172 200.6 

Autonomous Agent Based Load 

Balancing 
157.5 165.2 192.9 191.28 

 
As you can see in Figure 31, the Response Time for both the algorithms is almost same. As the 

number of cloudlets increase, there is some variation in the results. It was also observed that the 

performance of A2LB varied quite a lot as the performance greatly depends on the initial random 

allocation of  resources  to  the tasks. 
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Makespan Time keeping the VM’s fixed to 12 

 

Fig.12: Makespan time using Ant Colony Optimization with 12 VM’s. 

Table 14: Makespan Time (in seconds) using Ant Colony Optimization with 12 VM’s 
 

Scheduling Algorithm 
No. of Cloudlets 

200 300 400 500 

Ant Colony Optimization 522 564.1 600 604.4 

 

 

Fig.13: Makespan Time using Autonomous Agent Based Load Balancing algorithm with 12 

VM’s 
 

 

http://www.ijcrt.org/


www.ijcrt.org                                                            © 2024 IJCRT | Volume 12, Issue 8 August 2024 | ISSN: 2320-2882 

IJCRT2408410 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d838 
 

Table 15 Makespan Time (in seconds) using Autonomous Agent Based Load Balancing algorithm 

with 12 VM’s 

Scheduling Algorithm 
No. of Cloudlets 

200 300 400 500 

Autonomous Agent 

Based Load Balancing 
556.3 549.5 586.7 602.5 

Comparison in the performance of 2 algorithms in terms of Makespan time keeping the number of 

VM’s fixed can be analyzed from the table & chart below: 

Table:15 Performance comparison in terms of Makespan Time (in seconds) between Ant Colony 

Optimization & Autonomous Agent Based Load Balancing algorithm with 12 VM’s 

Scheduling Algorithm 
No. of Cloudlets 

200 300 400 500 

 

Ant Colony Optimization 
 

522 
 

564.1 
 

600 
 

604.4 

Autonomous Agent 

Based Load Balancing 

 
556.3 

 
549.5 

 
586.7 

 
602.5 

Fig.14: Performance comparison in terms of Makespan Time (in seconds) between Ant Colony Optimization & 

Autonomous Agent-Based Load Balancing algorithm with 12 VM’s 

As you can see in Figure 34, the performance of ACO is quite steady, whereas the performance of 

A2LB is unpredictable. Performance of both the algorithms is almost same even as your increase the 

cloudlets to 500. 

Performance of both the ant-based algorithms in term of response time and Makespan time is quite 

similar. But the performance of A2LB greatly depends on how the initial allocation of resources to 

tasks is done. Although A2LB seems to perform slightly better, but it is more time-consuming 
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algorithm and it involves migration of tasks. ACO in general does not perform any migration, whereas 

A2LB migrates the tasks from the overloaded VM to other VM. Also, the A2LB is a resource aware 

scheduling algorithm, whereas ACO only considers the Expected Time to Compute (ETC) for allocation 

the resources to tasks. Performance of ACO can be further improved by adding resource utilization 

parameters along with the ETC in its  probability function. 

Performance comparison of  Ant Colony Optimization Scheduling Algorithm, Particle Swarm 

Optimization Scheduling Algorithm & Genetic Algorithm 

Table 16: Parameters Setting of Cloudsim for performance comparison of Ant Colony 

Optimization, Particle Swarm Optimization & Genetic Algorithm 

The 3 algorithms are different from each other in terms of their applicability, benefits and 

challenges. GA belongs to the class of evolutionary algorithms, whereas ACO & PSO belong to the 

class of swarm optimization algorithms. Experiments were conducted to compare the performance of 3 

algorithms in terms of makespan time. Following are the results of the experiments. 
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Table 17: Makespan Time (in seconds) using Ant Colony Optimization with 8 VM’s 

 

Scheduling Algorithm 
No. of Cloudlets  

150 175 200 225 250 

Ant Colony 

Optimization (ACO) 
270 309 325 355 403 

 

 

Fig.15: Makespan time using Ant Colony Optimization with 8 VM’s. 

 

 

   CONCLUSION & FUTURE WORK 

Cloud computing offers efficient and affordable on-demand services and resources, utilizing virtualized 

resources. It's an extension of existing technologies like parallel and grid computing, providing services over 

the internet through an infrastructure and policies. Cloud task scheduling is a crucial research area, aiming to 

reduce resource underutilization and ensure timely task completion. Load balancing assigns equal work to 

machines based on their capabilities. For example, minimize cost, maximize profit, minimize execution time, 

maximize throughput. Metaheuristic algorithms are used to optimize task scheduling on cloud resources, but 

their results are only near-optimal in time, indicating potential for improvement. 
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In this Thesis an “Improved Resource Aware Hybrid Meta-Heuristic Scheduling Algorithm” is proposed for 

solving the problem of task scheduling in cloud. The main objective of this algorithm is to provide the updated 

load on each resource so that the choice of resources for next set of tasks is based on resource awareness. In 

addition to that, the proposed algorithm focuses on total execution time of each task on a resource individually 

on the basis of two parameters. The total execution time is based on execution/computation time and the 

transfer time/cost. The proposed algorithm is hybrid of Ant Colony Optimization and Particle Swarm 

Optimization. The results show that the Makespan time of the proposed algorithm is better than the Meta-

Heuristic algorithms (ACO, PSO), A2LB (Autonomous Agent based Load balancing and Hybrid of Ant 

Colony Optimization & Particle Swarm Optimization proposed in this thesis work only. Also, the transfer cost 

was computed for all the algorithms and the transfer cost of proposed algorithm is much lesser as compared to 

Meta-Heuristic algorithms (ACO, PSO), A2LB (Autonomous Agent based Load balancing and Hybrid of Ant 

Colony Optimization & Particle Swarm Optimization proposed in this thesis work only. The proposed algorithm 

also results in less response time as compared to other algorithms. Hence it can be concluded that the 

performance of the proposed algorithm in terms of Makespan time, Transfer cost & Response time is much 

better then Meta-Heuristic algorithms (ACO, PSO), A2LB (Autonomous Agent based Load balancing and 

Hybrid of Ant Colony Optimization & Particle Swarm Optimization proposed in this thesis work only. 
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